
BEAMS 
 

Thin-walled beams of open cross section 
 

Beams, whose thickness of individual partial cross section part ti is small comparing to beam 
cross section dimensions (b, h) of we call thin-walled. Literature specifies rate app. 1/10. 
There are differentiated open and closed cross sections, according to fact whether centre line 
constitutes closed curve. Thereinafter we will deal only with open cross sections according to 
theory of Prof. Vlasov. There belong e.g. I, C, T, U sections. 
Theory is based on 2 assumptions: 
1/ Deformation of cross section outline in its plane  does not exist. It follows that cross sections 
twist in their plane as rigid aggregates. 
2/ Elements of centre line surface originally rectangular, remain after deformation rectangular, 
as well, i.e. their angular deformation is nought. 
 
If the element is stressed only by torque, in the element could originate: 
a/ only tangential stresses. This phenomenon originates at free torsion (Saint-Venant), 
diamonding (deplanation) of cross section is not restrained, it could freely wage. 
b/ tangential stresses and normal stresses. Most frequent case – free torsion is restrained by 
boundary condition, loading, change of torque value along length of the beam, or change of 
cross section along length of the beam. We call this type as bounded torsion. We neglect it at 
massive cross sections, at thin-walled it play significant role on overall elasticity of the beam. 
Bounded torsion could arise also due to other types of loading, it need not be just a torque. It 
could be also shear force that does not pass through centre of shear, or axial force acting apart 
from centre of gravity of the cross section. 
 
Vector of deformation: u = [u, in, w, ωx , ωy , ωz , θ]T 
 
Differential equations of equivalence: 
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Msv is a free torsion (St.Venant), 
Mw is a bounded torsion (Vlasov, warping), 
B is bending torsion bi-moment. 
 
Total torque is: Mx = Msv + Mw . After substitution from antecedent equations we receive 
differential equations of torsion: 

Mx =G.IT.ω' - E.Iw.ω''' 
 
 
 
 



Number of nodes: 
2 
Shape functions: 
u = a1 + a2.x 
in = b1 + b2.x + b3.x2 + b4.x3 
w = c1 + c2.x + c3.x2 + c4.x3 
φ = d1 + d2.x + d3.x2 + d4.x3 , for thick cross-section is used only linear term: 
 

 
 
 
 
 

Stability of Thin-walled beams 
 
 
Example c.xx 
Critical force of unequal angle, articulately fixed. Length L=2[m], E=210[GPa], G=84[GPa]. 
Cross section rectangular, free of slopes and radiuses, thickness of arms 10[mm], length 
centreline arms 250[mm] and 150[mm]. 
Numeric solution and solution according to Vlasov approaches with increasing length of beam 
the Euler critical force. 
 

 analytical Euler analytical Vlasov 1D model 2D model 
Pcrit [kN] 2250 650 632 658 

Table No.1 
Results. 

 
 

 
Fig. c. xx 

Shape of buckling with torsion. Modelled by 2D shell elements. 
 
 
 



PLANAR ELEMENTS 
 
 

Coordinate systems 
 
Global coordinate system (abbreviation: GCS) 
It is a positive dextrotatory coordinate system valid for entire construction. In GCS there are 
computed deformations of nodes. 
It id denoted as [xG, yG, zG]. 
 
Plenary coordinate system (abbreviation: PCS) 
It is a coordinate system of planar element, each element has its PCS. It is a positive 
rectangular, dextrotatory system. Axis zP is perpendicular to plane element and planar axes xP, 
yP lay in the plane element. Definition of positive axis xP: it is parallel with intersection of the 
plane xG, yG with the plane of element, and its positive sense is determined in such a way that 
axes +xG, +xP contain together acute angle <0o, 90o>. This definition becomes uncertain, if: 
1/ does not exist intersection of planes - element lay parallel with xG, yG. Axis +xP is 
determined according to rule on acute angle between +xG and +xP. 
2/ intersection exist, but axis xG is perpendicular on plane of element - element lay in plane 
parallel with yG, zG.  
In both exceptional cases is applied rule on determination of +xP by means of acute angle 
between +xG and +xP. 
In the PCS there are computed internal forces.  
They are denoted as [xP, yP, zP]. 
 

 
 

Fig. c. xx 
Plenary co-ordinate system of planar element. 

 
Mark convention of internal forces 

Each internal force is an integral thrust line of corresponding component of stresses. 
 
Membrane (wall) internal forces. 
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Fig. c. xx 

Positive membrane force element. 
 
Bend (plate) internal forces. 
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Fig. c. xx 

Positive bend force element. 
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Transformations 

 
Transformation matrix for 2D elements in space: 
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L1 = cos(xG, xP)  M1 = cos(yG, xP)  N1 = cos(zG, xP) 
L2 = cos(xG, yP)  M2 = cs(yG, yP)  N2 = cos(zG, yP) 
L3 = cos(xG, zP)  M3 = cos(yG, zP)  N3 = cos(zG, zP) 
 
 
Transformation matrix for 2D task in plane: 
 
Wall element – arise of previous matrix T[6.6], droping out of corresponding rows and columns 
that belong to components that are not defined in this task. They are components: [σz, τyz, τzx]. 
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Plate elements – again there is taken, as base, full transformation matrix T[6.6], in what is not 
defined only σz. For bending and torsion part TB[3.3] could be used matrix for plane elasticity 
TM[3.3]. If the plate is with lateral shear, for shear force will be applied, regarding to keeping of 
direction N3 = 0, transformation matrix TS[2.2]: 
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transformation matrix T[6.6]. Regarding to sequencing of components of deformation vector: ε = 
[εx, εy, εz, γxy, γyz, γzx]T, the  sequence of vector components of stresses: σ = [σx, σy, σz, τxy, τyz, 
τzx]T. To the stress τyz belongs Qy, to the stress τzx belongs Qx . Than are shear force computed in 
sequence: [Qy, Qx]. 
 
Transformation of physical qualities 
Dp = (T-1)T . D . T-1 
D = TT . Dp . T 
 
Transformation of relative deformation 
It is possible to transform through the same transformation matrix as the vector of stress, only 
tensor of deformation. Vector of deformation is possible, but it is necessary to modify its 
components. For shear components of deformation vector should be substituted half value of 
full technical  slope that ε have nature of tensor, with what is possible further work, as is usual 



at vectors. Parameter γ means change of original right angle among directions of axis specified 
in indexes. 
 

 
Fig. c. xx 

Relatively angular deformation – of slope. 
 
εp = T. ε 
ε = T-1 . εp 
 
Transformation of the stress tensor 
σp = T . σ 
σ = T-1 . σp 
 

Planar elasticity and deformation 
 
Geometry is defined in plane. It is possible to solve both cases of planar elasticity: 
 
 - planar elasticity – loading, as well as reactions act in wall plane.  Vector of stress: σ = [σx, σy, 
0, τxy, 0, 0]T, after substitution to physical equations: 
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we will reach vector of deformation: ε = [εx, εy, εz, γxy, 0, 0]T. Deformation w(x,y,z) in direction 
upright to the plane of plate exist, but it is irrelevant. Wall in this direction freely change 
thickness, nothing prevent this. 
 
- planar deformation - layer with thickness h = 1 cut from the points that does not allow 
deformations in direction upright to the wall plane. Vector of deformation: ε = [εx, εy, 0, γxy, 0, 
0]T. We will reach stress vector through inversion of physical equations: σ = [σx, σy, σz, τxy, 0, 
0]T. Wall tray to deform also upright to its plane, what is prevented by adjacent layers. 
 
In next we work with reduced vectors of deformation and stresses: 
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Missing components is possible to computed of physical equations. Thickness h within one 
element is constant. 
 
In solution of geometrically non-linear tasks by the Neton-Raphson method is used 
quadratically only Green vector of deformation εII that comprises non-linear terms that are in 
theory of small deformation neglected: 
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Membrane isoparametric elements with rotational degrees of freedom 

(Serendipity family) 
Each vertex of element has 3 degrees of freedom 2 translations in wall plane walls and rotation: 
u = [u, in, ωz]. Vector of deformation and corresponding geometric equations that comprise 
only linear part: 
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Element could be physically isotropic, or orthotropic. Matrix of physical constant DM: 
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In case of isotropy is valid: 
D13 = D23 = 0 
 
planar elasticity:   planar deformation: 
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Material orthotropy is given by angle of rotation - angle β of orthotropy to planar co-ordinate 
element system. 
 
Vector of deformation in case thermal loading: ε = [α.T, α.T, 0]T where T is change of 
temperature from stadium of preparation (zero elasticity) after actual status 1. 
 

 
Fig. c. xx 

Uniform change of temperature. 
 

Result of solution are at: 

- planar elasticity of internal forces n (normal and shear):, 
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- planar deformation of stresses σ (normal and shear):. 
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Numeric integration of matrices 
There is utilised Gauss numeric integration that converts integral to sum of products of 
weighted coefficients and functional values of integrated function. Number of integration 
points and their position is for each element different; their exact description is presented at 
description of each element. At composition of matrix of elements by numeric integration  is 
not allowed to change its parameters, numeric integration is firmly bounded with each type of 
element and there is selected such number of integration points and their position that provides 
best results comparing to amount of machine instructions. Integration on unit square is: 
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m is a number of integration points,  
w are weight coefficients, 
f(ξ,η) are functional of value of shape function in corresponding point. 
 
For 3-node element is used analogical procedure, boundary of integral are <0, 1>. 
 
 
Elimination of nodes in centre of sides 
Field of deformation parameters of 3-nodal and 4-nodal element is approximated by quadratic 
multinomial, original geometry is with node in centre of each side. On each side of the element 
is anticipated that is straight. This enables to eliminate central node, what is moreover 
favourable from aspect of width of the system of equations and thus consumption of machine 
time. Resulting geometry of the element is described freely of centre node – it is linear. 
Resulting element is than sub-parametrical. 
 

  
Fig. c. xx 

Edge of element with centre node. 
 
Original elements have nodes in in centres of sides [uk, vk], these nodes are condensed by  
transformation of deformation parameters to vertices by interpolation: 

 
There will arise element that is compatible with other finite elements 1D and 3D that have 
corresponding degrees freedom in rotation.  
 
 

 
 
Spurious mode control 
For isoparametric elements is necessary to numerically stabilize elements, to avoid zero-energy 
modes. In case of 3-nodal element there appears only equal rotation of spurious mode, in case 
of 4-nodal element there is also hourglass mode. Stabilisation consists in adding of small 
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contribution to the potential energy to E element. Size of the parameter αR and αH is not 
possible to be changed. 
 
1/ Hourglass mode 
It occurs only at 4-nodal beams if there is used reduced integration. This mode vanishes, if 
there is used disordered net, or more elements. 
There is valid: ωz1 = -ωz2 = ωz3 = -ωz4 
 
Element has added energy EH: 
EH = αH . IN . ωH . Gxy . ωH 
αH - parameter of energy (1 . 10-3) 
V – element volume 
ωH = ¼ . (ωz1  - ωz2 + ωz3 - ωz4) 
Gxy - modulus of elasticity in shear 
 

 
Fig. c. xx 

Equal rotation spurious mode. 
 
2/ Equal rotation mode 
It occurs at 3-nodal and 4-nodal elements. 
There is valid: ωz1 = ωz2 = ωz3 = ωz4 
 
Element have added energy ER: 
ER = αR . IN . ωR . Gxy . ωR 
αR - parameter of energy (1 . 10-6) 
V- element volume 
ωR - relative rotation, computed in the centre of the C element: 
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Fig. c. xx 

Hourglass spurious mode. 
 
Air elements 
Special type of element that is possible to be used in case of validity of state equation of gases. 
They are constructions that are closed, filling if constituted by gas that at the same time assures 
synergism. It could to be insulation glass, where among several solid layers of glass and case of 
glued foil is present of given production temperature and pressure. We assume that temperature 
of element is constant, there is applied isothermal gas equation: 
 
p1 . V1 = p2 . V2 
 

 

 
 
 
 
 
 

Fig. c. xx 
Air hall solidly supported along bottom edge, asymmetrically loaded by uniform force loading, 

geometry, deformed shape. 
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Fig. c. xx 

Fragment of insulation construction with bottom solid edge and upper soft edge, symetrically 
loaded with uniform force loading (underpressure), geometry and deformed shape. 

 

 

 
 
 

Fig. c. xx 
Construction of previous example, loaded by symmetrically uniform force load (overpressure), 

geometry and deformed shape. 
 
 
4-nodal element: 
 

 
Figure 1, 2 

8-nodal origin 16 DOF membrane without RDOF. 
4-nodal new 12 DOF membrane with RDOF. 

 
 
Number of nodes: 



8 
Unit coordinates of nodes: 
{-1, -1}, {1, -1}, {1, 1}, {-1, 1} 
Shape functions: 
N1 = ¼ . (1 - ξ) . (1 - η) . (-ξ - η - 1) 
N2 = ¼ . (1 + ξ) . (1 - η) . (ξ - η - 1) 
N3 = ¼ . (1 + ξ) . (1 + η) . (ξ + η - 1) 
N4 = ¼ . (1 - ξ) . (1 + η) . (-ξ + η - 1) 
N5 = ½ . (1 - ξ2) . (1 - η) 
N6 = ½ . (1 + ξ) . (1 - η2) 
N7 = ½ . (1 - ξ2) . (1 + η) 
N8 = ½ . (1 - ξ) . (1 - η2) 
 
Numeric integration: 
Reduced (2 x 2) 
integration points and weight multiplier: 
ξ  = [-1/√3 1/√3 1/√3 -1/√3] 
η =  [-1/√3 -1/√3 1/√3 1/√3] 
w = [1  1 1 1] 
 
Evaluation: 
Function of surface on extrapolation of qualities of integration points to peaks: 
F = a1 + a2 . ξ + a3 . η + a4 . ξ . η 
 
Loading: 
Element could be loaded: 
- of node force (moment) in the node, 
- uniform loading on edge, 
- volume loading, 
- relative deformation of surface ε caused by uniform warming up, eventual uniform shrinkage. 
 
 
3-nodal element: 
 

 
Figure 3, 4 

6-nodal origin 12 DOF membrane without RDOF. 
3-nodal new 9 DOF membrane with RDOF. 

 



Unit coordinates of nodes: 
{0, 0}, {1, 0}, {0, 1} 
 
Shape functions: 
N1 =  1 - 3 . ξ - 3 . η + 2 . ξ2 + 4 . ξ . η + 2 . η2 
N2 = -ξ + 2 . ξ2 
N3 = -η + 2 . η2 
N4 =  4 . ( ξ - ξ2 - ξ . η) 
N5 =  4 . ξ . η 
N6 =  4 . ( η - ξ . η2 . η) 
 
Numeric integration: 
Selective reduced (4-point), 3 for εx, εy, 1 for γxy 
integration points and weight multiplier: 
ξ  = [1/6 2/3 1/6 1/3] 
η =  [1/3 1/3 2/3 1/3] 
w = [1/3 1/3 1/3 1] 
 
Evaluation: 
F = a1 + a2 . ξ + a3 . η 
Normal stresses are extrapolated of integration points to vertices according to the function F. 
Shear stress is constant, there is evaluation centre of gravity of the element. 
 
 
 
 
 
Matrices of finite elements 
 
Sttiffness matrix 
Dependency among vector field of deformation ε and unknown nodes by deformation 
parameters u is expressed by: ε = δ . N . u = BL . u. Linear deformation matrix B is obtained by 
derivation of shape functions N. 
Matrix of differential operators:  
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Matrix of shape functions:  
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Geometric matrix, Matrix of influence of initial stress on element stiffness 
This matrix is used for solution of problem of stability: 



, 
 
or for compilation of total tangency matrix of element with influence of elasticity: 
KT = KL + KG . 
 
Non-linear part BNL, taking into account influence of stress on overall stiffness of the element: 
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Cauchy stress matrix of previous iteration, in case of geometric non-linearity, or initial stresses 
– pre-stresses: 
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Than, geometric matrix of the element KG is: ∫

Ω

Ω= dBBK NL
T
NLG ...τ  

 
 

Plate elements 
Planar constructions, whose all points lay in one common plane. Thickness h is small, 
comparing to dimensions of the plate. At determination of characteristic dimension L of the 
plate (what is in case of rectangular plate a shorter dimension, in case of round plate diameter) 
it is possible to set up solutions of plate according to corresponding theory to: 
1/ Thin plate – ratio 1/50 < h/L < 1/10 - technical theory of bend of thin plates, based on 
Kirchhoff’s assumptions. There belong almost all ceiling plates. 
2/ Thick plate - ratio 1/10 < h/L < 1/5 – Reissner-Mindlin’s theory that respects shear of normal 
line slope due to shear deformation γxz, γyz. There could be used also thin plates, while it is 
necessary to eliminate shear of solving of cross section at small thicknesses. 
 
While the ratio is h/L > 1/5 - construction should be already evaluate as 3D task, at ratio h/L < 1/50 
the construction is necessarily to be solved a membrane, what is possible in the shell model, or 
membrane force are accentuated and in overall energetic potential could not be neglected. 
 
Force loading acts upright to the plane of the plate, moment around axes of the plane plate. 
Normal line to the centreline plane of the element remains after deformation straight, it depends 
on theory of calculation, whether it remain perpendicular to the centreline plane (Kirchhoff’s 
theory), or not (Reissner-Mindlin’s theory).  
Each vertex of element has 3 degrees of freedom: deflexions and rotation: u = [w, ωx, ωy]. 
Vector of deformation in case of thermal loading: ε = [α.ΔT/h, α.ΔT/h, 0, 0, 0]T where ΔT is 
difference of temperature on upper and bottom surface. 
 



 
Fig. c. xx 

Non-uniform change of temperature. 
 
Result of solutions are internal moments and force: 
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Thickness of element is constant. 
 
Loading: 
Element could be loaded: 
- by node force (moment) in vertex, 
- by uniform force loading on edge, 
- by volume loading, 
- by curvature of surface κ caused by non-uniform warming up, eventually non-uniform 
shrinkage. 
 
Application of affect of flexible subsoil. 
Flexible subsoil with shearing spreading of the Kolar-Nemec type could be easily added to the 
stiffness matrices. Stiffness matrix of subsoil is added to the stiffness matrix of the plate 
element. Potential energy of subsoil is given by: 
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Thin plates 
Element is based on Kirchhoff theory of thin plate, where is neglected shear deformation - 
slope. Deformations of plate are described by 1 function of 2 variables w(x,y). Rotations are 
derivations of the deflexions. Out of assumptions of this theory there is valid ε = [εx, εy, 0, γxy, 
0, 0]T. 

T2

T1ΔT = T2 - T1 

h



Normal line to non-deformed surface of the plate remains a normal line also after its 
deformation, and under assumption of zero displacement  u,in points of centreline surface there 
is valid: 
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After substitution to the geometric equations: 
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we will reach vector of deformation ε that vitiates linearly by high of cross section h. We 
describe this vector for short by the vector of curvature of deflexions surface κ, what is for plate 
more convenient inscription: 
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Between both vectors there is valid relation: ε = z . κ 
 
Normal stress σz is comparing to stresses σx and σy negligible small, they are not considered. 
Vector of stress is σ = [σx, σy, 0, τxy, 0, 0]T. Out of condition of zero slope there are zero also 
shear of component τyz and τzx. Discrepancy of assumptions with reality of this theory is in: 

1/  ( )[ ]yxz E
σσμε +−= ..1 physical equations, but σz = 0. 

2/ 
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zxzx

yzyz

G

G
τγ

τγ
, but out of conditions of equilibrium there is valid that course of 

shearing stresses by high of cross section is parabolic. 
 
Number of nodes: 
3 
 
Coordinates of nodes: 
{1, 0, 0}, {0, 1, 0}, {0, 0, 1} in planar co-ordinates 
 
Deflexions function of the plate: 
 



w = a1.L1+ a2.L2+ a3.L3+ a4.L1
2.L2+ a5.L2

2.L3+ a6.L3
2.L1+ a7.L1

2.L3+ a8.L2
2.L1+ a9.L3

2.L2+ 
2.a10.L1.L2.L3     
 
Meaning of parameters a1-9: deflexions w and rotations ωx, ωy in each node. Parameter a10 is 
linear combination of parameters: a10 = (a4 + a5 + a6 + a7 + a8 + a9) / 4. To this parameter 
appertain deflexions w in the centre of gravity of element, we work in calculation free of 
internal nodes, and that is why we eliminate this parameter. 
 
L1, L2, L3 are planar coordinates. At 3-nodal element it is more convenient to work in the 
system of planar co-ordinates, as in the Cartesian system, due to calculation of integrals. Each 
planar co-ordinate Li of the item P expresses ration of surfaces: 
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Point P defined inside the element with planar co-ordinates [L1, L2, L3] is transformed to the 
Cartesian system with co-ordinates [x, y] according to: 
 
xP = x1.L1 + x2.L2 + x3.L3 
yP = y1.L1 + y2.L2 + y3.L3 
1 = L1 + L2 + L3 
 
It follows that point 1 of the element has planar coordinates of [1, 0, 0], point 2 [0, 1, 0], and 
point 3 [0, 0, 1].  
 

 
 
Inverse relating to antecedent 3 equations represent equations for calculation of planar co-
ordinates of the point P, defined in the Cartesian system: 
 
Li = (ai + bi.x + ci.y) / (2.A), accordingly for j, k. 
 
Surface of the element A could be defined e.g. according to: 
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ai = xj.yk - xk.yj 
bi = yj - yk 
ci = xk - xj 
 
we will obtain expressions for aj, bj, ... , ck by cyclic exchange of indexes. 
 
We derive each function defined in the system of planar co-ordinates f(L1,L2,L3) for needs of 
stiffness matrix, vector of volume forces and internal forces as composite function according 
to: 
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Integration: 
Calculation of integral is in this case simple, we advance according to Fellippe equation: 
Implicitly analytically. 
 

( )∫ +++
=

A

r
3

q
2

p
1 A.2.

!2rqp
!r!.q!.pdA.L.L.L  

 
Thick plates 

Element is based on assumption of Reissner-Mindlin’s theory: 
- Normal lines to the centreline plane remain straight also after deformation, however, 

they are not upright to the centreline plane of the plate, but there is neglected 
deplanation of cross section, 

- Normal line of stress σz is comparing to stresses σx and σy negligible small, such as in 
the Kirchhoff theory. Of this condition their is also in this theory contradiction with εz = 
0. This phenomenon originates by reduction of task dimension. 

 
Vector of deformation ε = [εx, εy, 0, γxy, γyz, γzx]T is composed of deflexion deformation of 
surface εx, εy, γxy that are linearly changed by high of the cross section and constant slope by 
high of the cross section γyz, γzx. 
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While w, φx and φy are independent variable, contrary of the the Kirchoff plate theory. 
 
The element could bet physically isotropic, as well as orthotropic, shape of physical matrix DB 
is: 
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In case of isotropy there is valid: 
D13 = D23 = D45 = 0 
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Material orthotropy is represented by angle of rotation of angle β orthotropy to the planar co-
ordinate system of the element. 

 
LYNN - DHILLON 

Element defined in the Cartesian co-ordinates with linear approximation functions with adding 
of quadratic beams for deflexion for improvement of convergence. Problem with shear locking 
at decreasing thickness is solved by introduction of numeric-stabilisation test: (D44, D55) ≤ 500 . 
(D11, D22) / A, where A is planar scope of the element. 
 
Number of nodes: 
3 
 
Coordinates of nodes: 
{0, 0}, {x2, y2}, {x3, y3} 
 
Shape functions: 
w = a1 + a2 . x + a3 . y – ½ . a8 . x2 + ½ . (a5 – a8) . x . y + ½ . a6 . y2 
ωx = a4 + a5 . x + a6 . y 
ωy = a7 + a8 . x + a9 . y 
 
Integration: 
Implicitly analytically 

 
 

MITC4 
Isoparametric linear element according to [Bathe], elimination of shear locking at decreasing 
thickness is done by mixed interpolation of deflexion, rotation and slope. 
Qualities of the element: 

- element matrix is obtained by full Gauss’s numeric integration , 



- element has no zero mode of energy 
 

Number of nodes: 
4 
 
Unit coordinates of nodes: 
{-1, -1}, {1, -1}, {1, 1}, {-1, 1} 
 
Shape functions: 
N1 = ¼ . (1 - ξ) . (1 - η)  
N2 = ¼ . (1 + ξ) . (1 – η) 
N3 = ¼ . (1 + ξ) . (1 + η) 
N4 = ¼ . (1 - ξ) . (1 + η) 
 
Numeric integration: 
Full (2 x 2) 
Integration of points and weight multiplier: 
ξ  = [-1/√3 1/√3 1/√3 -1/√3] 
η =  [-1/√3 -1/√3 1/√3 1/√3] 
w = [1  1 1 1] 
 

 
 

Facet-shell structures  
Facet-shell structure is an operating term for planar (2-dimensional) structures situated 
in 3-dimensional space and loaded so that there is not possible in them to separate the 
plate impact from the wall impact. There is used an element from planar tension. Bending 
element depends on selected plate theory. The final tension vector: σ = [σx, σy, 0, τxy, τyz, 
τzx]T, deformation vector: ε = [εx, εy, εz, γxy, γyz, γzx]T. 
Internal forces are composed of a vector of σ membrane stresses and vector of m bending 
moments and shear forces. 
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The matrix of physical constants of the element D is composed of a bending part DB, 
membrane part DM. Material orthotropy is defined by the angle of the rotation of the angle 
β of orthotropy to planar co-ordinate system of the element, into which are because of so 
defined element transformed physical quantities. 
In case of physical non-linearity, by origination of cracks along the height of a section 
will come to moving of the position of bearing of centreline plane in comparing to the 
original one, which divided the width of the element into 2 equal parts. This effect 
respects a sub matrix DBM , it describes cohesion of wall and plate effects: 
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Large deformations 
In solving of geometrically non-linear tasks by the Neton-Raphson method is used 
quadratic element of Green vector in deformation εII, which includes non-linear terms that 
are neglected in the theory of small deformations: 
 
Subsoil 
Every finite element can have along the entire surface continuous contact with effective 
model of a subsoil of the Kolar-Nemec type, which is defined by five constants in planar 
coordinates [xp, yp, zp]: 
 
C1x , C1y , C1z , C2x , C2y . 
 
Relevant forces for deformations are membrane (ru, rv) like and bending (rw, tx, ty) like. 
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The constants C1x , C1y express the resistance against planar movements of centreline 
plane of the element (friction). The constants C1z , C2x , C2y are coefficients of relations 
expressing resistance of surrounding against the movement and angular rotation. The 
constant C1z responds to the Winkler model, C2x , C2y Pasternak model. In most cases is 
C1x = C1y and C2x = C2y. 
 
 
Sandwich elements 
The element is along the height divided into a few (at least 2) isotropic, or orthotropic 
layers, ideally resistant linked together, so that there does not come to shearping. Every 
layer has its physical parameters, which are possible to solve so far only by physical 
linear elasticity. According to Newton-Raphson is possible to solve such elements by 
geometrical non-linearity. The number of layers is unlimited. The thickness of every layer 
is constant. Load of an element is analogous, as well as with facet-shell elements. 
Alternate homogeneous cross-section with ideal static quantities, which are dealt with in 
calculation will be created from a composite cross-section. For specification we alternate 
resistance come out of equality of work of internal and external forces. Evaluation of 
internal forces comes off in optional point along the height of a cross-section, where on 
the basis of relevant equations of elasticity is finished calculation of final quantities. 
 
Example: 
Bimetallic strip - console, constant change of the temperature. E=3e+7 [Pa], μ=0, 
h1=h2=0.05 [m], ΔT=100 [K], α1=1e-5, α2=2e-5. The length of a beam L=10[m], the 
width 1[m]. (VM 35). 
 



 
 

Picture. No. xx 
Geometry, cross-section of an element and results – process of tensions along the height 

of a cross-section. 
 

Deformations 
and tension 

ux [m] uz [m] σ1
I [Pa] σ2

I [Pa] σ1
II 

[Pa] 
σ2

II [Pa] 

numerically 0.15 0.75 -7500 15000 -15000 7500 
analytically 0.15 0.75 -7500 15000 -15000 7500 

Chart No. xx 
Results. 

 
 
 
 

SPACE ELEMENTS 
 

3-DIMENZIONAL ISOPARAMETRIC ELEMENTS WITH ROTATIONAL 
DEGREES OF FREEDOM (SERENDIPITY FAMILY) 

 
Every vertex of an element has 6 degrees of freedom: [u, v, w, φx, φy, φz]. Elements do not 
have nodal -point in the centre of sides, edges can be straight only. Elements are defined 
by geometry of apexes and isotropic material. In case of 6-nodal -point element and 8-
nodal -point is possible to use material orthotropy, that is used in contact elements. 
 

Picture No.xx 

ΔT 

h1

h2 

σ1
I 

σ2
I 

σ2
II 

σ1
II 

E, α2

E, α1

L 



20-nodal -point original 60 DOF brik without rotational degrees of freedom. 
8- nodal -point new 48 DOF brik with rotational degrees of freedom. 

 
 
Is used numeric gauss integration. Every element has relevant number of integral points, 
while because of the fastness of calculation is used reduced integration. This results in 
origination of zero energy states, which are treated by additional resistances. We 
distinguish 2 types: equal rotations and hourglass. For every element ´s area is used 
analogical technique of additional resistance introduction into resistant matrix of an 
element so as for 2D membrane elements. 
For all isoparametrical elements is used equal principle of transformation of nodal -point 
deformations in centres of sides into vertices so as it is in the case of 2-dimensional 
elements, but it is completed by the third dimension. Movements in centres of the sides 

are eliminated by mediation: 
 

 
 
Space elements with smaller number of vertices than 8 are solved in 2 ways: 
1/ by degeneration of 8-nodal -point element, picture No.xx, 
2/ by defining of own shape functions and by position of integral points. 
Both techniques are implemented, for a user is available only the technique No.2. 
Hereinafter is in detail described only this technique. 
 
8-nodal-point element - brik is derived from quadratic izoparametric element with 20 
nodal- points. Such an element allows using curved edges, its disadvantage is large width 
of a half -belt and consequently large consumption of machine time. By above mentioned 
elimination of nodal-points in centres of sides of 20-nodal-point brick was achieved 
equations system with tighter half-bend, what lead to acceleration of calculation. From the 
original stiffness matrix of the 60x60 element will arise a matrix of the 48x48 size.  
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Picture No.xx 

Scheme of brick degeneration. 
 
 
Stiffness matrix 
Hereinafter presented shape functions N create together with matrix of differential 
operators of δ 6 geometrical equations: 
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ε = δ.N.u = B.u, while: 
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Transformation of derivations of non-dimensional co-ordinates to Cartesian co-ordinates is: 
 
Inverse relation of solution of equations: 



 
 
Where J is determinant of Jacob matrix of transformation: 

 
Evaluation of Jacobean in any point: 

 
Loading vector 
Vector of volume forces: ∫−=

V
v dVbNf ].].[[  

Vector of initial deformation of temperature has in case of 3D shape: 
 

{ } [ ]Tzyx
tep T 000. αααε Δ=  
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e dVDBf ].].[.[][ ε  

Geometric matrix 
Linear part of the deformation matrix BL, is assemble on base of matrix of differential operators 
δ, introduced at previous text. Non-linear part BNL , necessary for solving of stability (or for 
calculation of tangent matrix) is of shape: 
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Cauchy’s matrix of stresses: 
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On base of presented assumptions we are able to assemble geometric matrix KG , with which 
we could approach to solving of eigennumbers: 
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Mass matrix 
This matrix is not diagonal in most of cases. However, it is symmetric, positively defined. We 
convert it to diagonal one to mass vector by thereinafter described algorithm. 
We adjust mass matrix in general:  
 

[ ] [ ]∫=
V

T
M dVNNK ...ρ  

to shape of vector according to algorithm: 
1/ we calculate 

∑
=

=
N

j
jiMi KM

1
),(  for i = 1, N 

2/ set up 
   KM(i,j) = 0 for i <> j 
   KM(i,i) = Mi for i = 1, N 
 
Stress 
Results - stresses – we will obtain directly in integrating Gauss points. For each element we 
will reach field of stresses: 
σg = [σx1, …, σxN, σy1, …, σyN, σz1, …, σzN, τxy1, …, τxyN, τyz1, …, τyzN, τzx1, …, , τzxN], N is number of 
integration points. Each element has specific number of integration points and their position in 
dimensionless co-ordination system ξ, η, ζ. 
Taking into account evaluation of results in 3D, it is more convienent to provide user results 
directly in vetices σv, what we solve with their extrapolation to vertices of brick tranship of 
virtual hyperbolic function F that is different for each type of element. We will reach 
transformation matrix Tσ, that assure extrapolation of results to vertices, from solutions of 
equations of function F in corresponding integration points: 

σv = Tσ . σg . 
For solving of stability we operate with resulting stress in brick that we obtain as an 
arithmetical mean of vertices. 
 

 
Tetrahedron 

Number of nodes: 
10 
Unit coordinates of nodes: 
{0, 0, 0}, {1, 0, 0}, {0, 1, 0}, {0, 0, 1} 
Shape functions: 
N1 = (1 - ξ - η - ζ) . (1 - 2 . ξ - 2 . η – 2. ζ) 
N2 = ξ . (2 . ξ - 1) 
N3 = η . (2 . η - 1) 
N4 = ζ . (2 .  ζ - 1) 
N5 = 4 . ξ . (1 - ξ - η - ζ) 
N6 = 4 . η . (1 - ξ - η - ζ) 
N7 = 4 . ζ . (1 - ξ - η - ζ) 
N8 = 4 . ξ . η 
N9 = 4 . η . ζ 



N10 = 4 . ζ . ξ 
Numeric integration: 
Selective, reduced (6-point), 5 for εx, εy, εz, 1 for γxy, γyz, γzx 
integration points and weight multiplier: 
ξ  = [1/6 1/2 1/6 1/6 1/4 1/4] 
η =  [1/6 1/6 1/2 1/6 1/4 1/4] 
ζ  = [1/6 1/6 1/6 1/2 1/4 1/4] 
w = [9/20 9/20 9/20 9/20 -4/5 1] 
Evaluation: 
Function of surface for extrapolation of qualities of integration points to vertices: 
F = a1 + a2 . ξ + a3 . η + a4 . ζ 
 
 

Pyramid element 
Number of nodes 
13 
Unit coordinates of nodes: 
{-1, -1, 0}, {1, -1, 0}, {1,  1, 0}, {-1,  1, 0}, {0,  0, 1} 
Shape of the function 
N1 = ¼ . (-ξ - η - 1) . ((1 - ξ) . (1 - η) - ζ + (ξ . η . ζ) / (1 - ζ)) 
N2 = ¼ . (ξ - η - 1) . ((1 + ξ) . (1 - η) - ζ - (ξ . η . ζ) / (1 - ζ)) 
N3 = ¼ . (ξ + η - 1) . ((1 + ξ) . (1 + η) - ζ + (ξ . η . ζ) / (1 - ζ)) 
N4 = ¼ . (-ξ + η - 1) . ((1 - ξ) . (1 + η) - ζ - (ξ . η . ζ) / (1 - ζ)) 
N5 = ζ . (2 . ζ - 1) 
N6 = (1 + ξ - ζ) . (1 - ξ - ζ) . (1 - η - ζ) / (2 . (1 - ζ)) 
N7 = (1 + η - ζ) . (1 - η - ζ) . (1 + ξ - ζ) / (2 . (1 - ζ)) 
N8 = (1 + ξ - ζ) . (1 - ξ - ζ) . (1 + η - ζ) / (2 . (1 - ζ)) 
N9 = (1 + η - ζ) . (1 - η - ζ) . (1 - ξ - ζ) / (2 . (1 - ζ)) 
N10 = ζ . (1 - ξ - ζ) . (1 - η - ζ) / (1 - ζ) 
N11 = ζ . (1 + ξ - ζ) . (1 - η - ζ) / (1 - ζ) 
N12 = ζ . (1 + ξ - ζ) . (1 + η - ζ) / (1 - ζ) 
N13 = ζ . (1 - ξ - ζ) . (1 + η - ζ) / (1 - ζ) 
Numeric integration 
reduced 8 - point (2 x 2 x 2) 
integration of points and weight multiplier: 
ψ1 = 0.50661630334978769, ψ2 = 0.26318405556971380 
ψ3 = 0.12251482265544100, ψ4 = 0.54415184401122496 
ψ5 = 0.23254745125350801, ψ6 = 0.10078588207982500 
ξ  = [-ψ1 ψ1 ψ1 -ψ1 -ψ2 ψ2 ψ2 -ψ2] 
η =  [-ψ1 -ψ1 ψ1 ψ1 -ψ2 -ψ2 ψ2 ψ2] 
ζ  = [ψ3 ψ3 ψ3 ψ3 ψ4 ψ4 ψ4 ψ4] 
w = [ψ5 ψ5 ψ5 ψ5 ψ6 ψ6 ψ6 ψ6] 
Evaluation: 
Function of surface for extrapolation of qualities of integration points to vertices: 
F = a1 + a2 . ξ + a3 . η + a4 . ζ + a5 . ξ . η + a6 . η . ζ + a7 . ζ . ξ + a8 . ξ . η . ζ 
 
 
 
 

Triangular prism (wedge) 



Number of nodes 
15 
Unit coordinates of nodes: 
{0, 0, -1}, {1, 0, -1}, {0, 1, -1}, {0, 0,  1}, {1, 0,  1}, {0, 1,  1} 
Shape of the function 
N1 = ½ . (1 - ζ) . (1 - ξ - η) . (-2 . ξ - 2 . η - ζ) 
N2 = ½ . ξ . (1 - ζ) . (2 . ξ - ζ - 2) 
N3 = ½ . η . (1 - ζ) . (2 . η - ζ - 2) 
N4 = ½ . (1 + ζ) . (1 - ξ - η) . (-2 . ξ - 2 . η + ζ) 
N5 = ½ . ξ . (1 + ζ) . (2 . ξ + ζ - 2) 
N6 = ½ . η . (1 + ζ) . (2 . η + ζ - 2) 
N7 = 2 . ξ . (1 - ζ) . (1 - ξ - η) 
N8 = 2 . ξ . η . (1 - ζ) 
N9 = 2 . η .(1 - ζ) . (1 - ξ - η) 
N10 = 2 . ξ . (1 + ζ) . (1 - ξ - η) 
N11 = 2 . ξ . η . (1 + ζ) 
N12 = 2 . η . (1 + ζ) . (1 - ξ - η) 
N13 = (1 - ξ - η) . (1 - ζ2) 
N14 = ξ . (1 - ζ2) 
N15 = η . (1 - ζ2) 
Numeric integration 
reduced 6 - point (3 x 2) 
integration points and weight multiplier: 
ξ  = [1/6 2/3 1/6 1/6 2/3 1/6] 
η =  [1/6 1/6 2/3 1/6 1/6 2/3] 
ζ  = [-1/√3 -1/√3 -1/√3 1/√3 1/√3 1/√3] 
w = [1/3 1/3 1/3 1/3 1/3 1/3] 
Evaluation: 
Function of surface for extrapolation of qualities of integration points to vertices: 
Function of extrapolation is obtained by combination of triangle and line element: 
(b1 + b2. ξ + b3. η), (b4 + b5. ζ), their multiplying and adjusting to shape: 
F = a1 + a2. ξ + a3. η + a4. ζ + a5. ξ . ζ + a6. η . ζ 
 
 
 
 
 

8-nodal brick 
Number of nodes 
20 
Unit coordinates of nodes: 
{-1, -1, -1}, {1, -1, -1}, {1,  1, -1}, {-1,  1, -1}, {-1, -1,  1}, {1, -1,  1}, {1,  1,  1}, {-1,  1,  1} 
Shape of the function 
N1 = ⅛ . (1 - ξ) . (1 - η) . (1 - ζ) . (-ξ - η - ζ -2) 
N2 = ⅛ . (1 + ξ) . (1 - η) . (1 - ζ) . ( ξ - η - ζ -2) 
N3 = ⅛ . (1 + ξ) . (1 + η) . (1 - ζ) . ( ξ + η - ζ -2) 
N4 = ⅛ . (1 - ξ) . (1 + η) . (1 - ζ) . (-ξ + η - ζ -2) 
N5 = ⅛ . (1 - ξ) . (1 - η) . (1 + ζ) . (-ξ - η + ζ -2) 
N6 = ⅛ . (1 + ξ) . (1 - η) . (1 + ζ) . ( ξ - η + ζ -2) 
N7 = ⅛ . (1 + ξ) . (1 + η) . (1 + ζ) . ( ξ + η + ζ -2) 



N8 = ⅛ . (1 - ξ) . (1 + η) . (1 + ζ) . (-ξ + η + ζ -2) 
N9 = ¼ . (1 - ξ2) . (1 - η) . (1 - ζ) 
N10 = ¼ . (1 + ξ) . (1 - η2) . (1 - ζ) 
N11 = ¼ . (1 - ξ2) . (1 + η) . (1 - ζ) 
N12 = ¼ . (1 - ξ) . (1 - η2) . (1 - ζ) 
N13 = ¼ . (1 - ξ2) . (1 - η) . (1 + ζ) 
N14 = ¼ . (1 + ξ) . (1 - η2) . (1 + ζ) 
N15 = ¼ . (1 - ξ2) . (1 + η) . (1 + ζ) 
N16 = ¼ . (1 - ξ) . (1 - η2) . (1 + ζ) 
N17 = ¼ . (1 - ξ) . (1 - η) . (1 - ζ2) 
N18 = ¼ . (1 + ξ) . (1 - η) . (1 - ζ2) 
N19 = ¼ . (1 + ξ) . (1 + η) . (1 - ζ2) 
N20 = ¼ . (1 - ξ) . (1 + η) . (1 - ζ2) 
Numeric integration 
reduced 8 - point reduced (2 x 2 x 2) 
integration points and weight multiplier: 
ξ  = [-1/√3 1/√3 1/√3 -1/√3 -1/√3 1/√3 1/√3 -1/√3] 
η =  [-1/√3 -1/√3 1/√3 1/√3 -1/√3 -1/√3 1/√3 1/√3] 
ζ  = [-1/√3 -1/√3 -1/√3 -1/√3 1/√3 1/√3 1/√3 1/√3] 
w = [1  1 1 1 1 1 1 1] 
Evaluation: 
Function of surface for extrapolation of qualities from integration points to vertices: 
F = a1 + a2 . ξ + a3 . η + a4 . ζ + a5 . ξ . η + a6 . η . ζ + a7 . ζ . ξ + a8 . ξ . η . ζ 
 
 
 
 
 

 
 

EXAMPLES 
 
For comparison we have selected following examples. 
Example No. 1 
Cantilever fig.No. 3, loaded by axial force. Cross section bxh = 0.3x0.75 m, length L = 6 m, E 
= 20 GPa, μ = 0.2, density ρ = 2300 kg/m3, N = 1000 kN. We have monitored displacement on 
end (in the point 1), stress on beginning of cantilever in center of gravity of the brick (in the 
point 2). Stability was solved from axial force, dynamics form own weight. 
 

 

 
Figure No.3 

Cantilever loaded on free end by axial force. 
 



 
dividing u1 [mm] σ2 [MPa] λ ω [rad.s-1] 
1x1x6 1.458 4.44 2.44 0.310 
2x2x15 1.332 4.44 2.37 0.311 
2x4x30 1.331 4.44 2.301 0.311 
analytically 1.333 4.44 2.313 0.314 

Table No.1 
Results. 

  
Figure No.4, 5 

Stability – 1st and 4th own shape of buckling. 
 

  
 

Figure No.6, 7 
Dynamics - 3rd and 5th own shape of oscillation. 

 
 
Example No. 2 
Cantilever fig. No. xx, loaded by bending moment, assignment as in the example No.1, M = 
1000 kNm. We have monitored deflexions on end (in the point 1), stress in bracket placing at 
upper surface of the construction (in the point 2).  
 

 
Figure No.8 

Bracket loaded on the free end by bending moment. 
 
 

dividing w1 [m] σ2 [MPa] 
1x1x6 0.08157 36.8592 
2x2x12 0.08390 35.4808 
2x4x18 0.08475 35.4047 
analytically 0.08533 35.5555 

Table No.2 
Results. 



Example No. 3 
Plate Fig. No. 9, axb = 3.5x5 m, thickness h=0.25 m, E = 20 GPa, μ = 0.15, uniform load q = 
250 kNm-2. We have monitored deflexions in the centre of plate (in the point 1), deflexions in 
the centre of free edge (in the point 2), moment in the centre plate (point 1) in direction of 
shorter side.  
 

 
Figure No.9 

Uniform loaded plate. 
 
 

dividing w1 [m] w2 [m] Mx1 [kN.m] 
14x20x2 0.00793 0.01483 57.5 
analytically 0.00809 0.01454 58.2 

Table No.3 
Results. 

 
 
Example No. 4 
Plate Fig. No. 10, axb = 6x4 m, thickness h=0.2 m, E = 20 GPa, μ = 0.15, ρ = 2300 kgm-3, 
supported along entire circumference fixing. We have solved own frequency and own shapes.  
 



 
Figure No.10 

Plate fixed along circumference. 
 

dividing f1 [Hz] f2 [Hz] f3 [Hz] 
6x4x1 54.10 90.68 162.7 
12x8x1 46.98 72.53 116.9 
60x40x2 45.61 70.05 110.1 
analytically 45.974 71.145 112.58 

Table No.4 
Results. 

 
 

Figure No.11 
Dynamics -  1st own shape of oscillation. 

 



 
Figure No.12 

Dynamics -  2nd  own shape of oscillation. 
 

 
Figure No.13 

Dynamics -  3rd own shape of oscillation. 
Example No. č. 5 
Plate Fig. No.14, A x B = 9 x 3 [m], thickness h = 0.1 [m], E = 32.5 [GPa], μ = 0.0, supported 
along entire circumference articulated. Uniform membrane loading qn = -3.33 [MN.m-2], 
resultant N = -1 [MN]. We have solved critical loading and own shapes. Wall buckling in 
square valves - this shape represents minimal resistance against buckling. 
 

 
Figure No.xx 

Plate along circumference fulcrumed, axially loaded. 
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dividing Ncr [MN] 
18x6x2 42.87 
45x15x2 35.50 
90x30x2 34.71 
analytically 33.01 

Table No.x 
Results. 

 
 

Figure No.xx 
Stability - 1. own shape of buckling. 

 
 
Example No. 6 
Plate of previous example. Loading uniform shear qt = 100 [kN.m-2] po circumference. We 
have solved critical loading and own shapes. 
 

 
Figure No.xx 

Plate by circumference fulcrumed, loaded by shear flow. 
 
 
 

dividing Qcr [MN.m-1] 
18x6x2 24.26 

B

A

qt 

qt

B



45x15x2 17.76 
analytically 17.46 

Table No.x 
Results. 

 

 
 

Figure No.xx 
Stability – 1st own shape of buckling. 

 
 
 
Example No. 7 
Element modelled by bricks, assignment of example c.xx. 

 
 

Figure No.xx 
Beam modelled of 3D elements 

 
dividing uz [mm] φy [mrad] 
1.00 x 1.00 x 1.00 [m] 7.692 1.173 
0.50 x 0.50 x 0.50 [m] 7.745 1.180 
Mathiasson 7.700 1.190 

Table No.x 
Results. 

L
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Example No. 8 
Calculation of frequency of plate. Example was taken over of ANSYS Verification Manual, 
No. 66 -"Vibration of and flat plate". Used are imperial units. A x B = 16 x 4 [in], thickness h = 
1[ in], E = 30.106 [psi], μ = 0.0, specific mass ρ = 0.000728 [lb.sec2.in-4]. Supports - fixing on 
the shorter side. 
 

 
Figure c.xx 

Scheme of plate. 
 

 Dividing   Timoshenko 
4x2x1 8x2x1 16x4x1 32x8x2  
125.57 127.16 127.56 127.76 128.09 

Table No.x 
Results. 

 
 
Example No. 9 
Calculation of angular frequency ω. Example compares analytic solution of the column with 
continuously spreader mass with numeric one. Cross section of column b x h = 0.1 x 0.2 [m], L 
= 6 [m], E = 27 [GPa], μ = 0.0, specific mass ρ = 50 [kg.m-3], what responds to 1[kg.m-1]. 
Solution of frequency equations (cos(λ).cosh(λ)+1=0) was considered for first two shapes 
1.875104 and 4.694091. Whereas calculation takes into account spatial acting, gained were 2 x 
2 = 4 solutions. 
 
 

 
Figure c.xx 

Scheme of column 

L

B

A



 
Dividing  angular  frequency ω [s-1] 
6x1x1 2.0663 4.1205 12.9069 25.6399 
12x2x2 2.0832 4.1448 12.9638 25.7887 
24x2x2 2.0832 4.1448 12.9783 25.8178 
48x4x2 2.0832 4.1448 12.9822 25.8379 
analytically 2.0718 4.1436 12.9839 25.9676 

Table No.x 
Results. 

 
 
Example No. 10 
Calculation of angular frequency ω. Example is of literature Marton P., Travnicek F.: 
Dynamics of constitutional structures - Examples, STU Bratislava. For geometry of cross 
section was only moment of inertia Iy = 1.6 [m4]. L = 1 [m], E = 210 [GPa], F = 2.2 [kN]. 
Example does not take into account own mass of bracket. Mass of node was uniformly 
distributed by cross section in given point of acting. 
 
 

 
Figure c.xx 

Scheme of the bracket 
 

 Dividing analytically 
10x1x1 20x2x2 67.043 
67.098 67.023  

Table No.x 
Results - angular frequency ω [s-1]. 

 
 
 

Example No.11 
Rotation of the element as rigid unit. Brick supported by hinge in 1 node, loaded with force in 
oposite node, solvd by geometric nonlinearity according to Newton-Raphson. 
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Fig.c.xx 

Geometry and deformed shape. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

CONTACTS 
 
Basic assumption is, that during increases of load will not come to change of contact 
space of 2 elements, which have a contact among themselves. From that follows necessity 
of knowledge of a contact region before calculation. By this assumption is limited number 
of tasks, which are possible to solve. In the next stage of development can come to further 
development in this issue on the basis of user response. 
Process of defining the contact is necessary except of geometry of contact areas, to 
choose adequate physical law of contact. This one is defined especially for normal 
treatment on contact plane and tangentially in its plane (friction). Normal influence does 
not cause bigger problems in calculation. On the contrary, by introduction of friction 
conditions in plane of the contact and mainly, which is dependent on normal force to the 
surface (Coloumb) mostly in the course of calculation causes problems with convergence, 
whole calculation can be markedly slowed down.. 
 



Normal contacts 
 

 
Picture No.xx 

Exclusion of pressure 
 

 
Picture No.xx 

Exclusion of tension 

 
Tangential contacts 

 

  
 

Picture No.xx 
Elastic Coulomb´s friction 

Picture No.xx 
Elastic friction 

 
Picture No.xx 

Elastic friction with τmax limitation 
 
Key: 
E - normal stiffness 
C - stiffness in friction 
σn - normal stress on plane of contact 
τs = μ . |σn| - max. allowed tension in friction for Coulomb’s friction 
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μ - coefficient of friction 
τmax - max. allowed tension in friction 
 

POSTCRITICAL IMPACT 
 
The method is defined for these types of constructions, in which will come to snap-
through when is reached load in limit points and to following overleap on new stabile 
shape. In this way behave strut-framed beam, flat arcs and shells. Load tracks can 
compose of bifurcation points (bifurcation of balance). On the contrary, in consequence of 
used procedure of solving equals is important, that the load track would not contain 
reversions (snap-back). 
 
Load tracks, which have only 1 limit point – standard case of stability - loading can reach 
its maximum (minimum) right in this point, collapse of a structure will occur, it has no 
sense to solve by this procedure. 
 
Description of strut-framed beam behaviour on the picture No.xx: 
At first we consider a case of solid beams, where not bifurcation is points on the load 
track. 
In gradual increasing of load from the initial point 0 we will reach the limit point A. In 
next slight enlargement of the load will come to sudden break of strut-framed beam into 
point B.  
In this moment the grouped membrane potential will change into kinetic energy given by 
the capacity of the ABC space and this will cause dynamic change of the shape. During 
researching of a scientific notation of such an action we will find out, that at least 1 minor 
of the system is negative. Likewise, during reverse loading technique will come to 
movement from the point B into limit point C and to an overleap on the point D. 
In case that axial force in a beam will exceed critical force of the beam, in load level in 
bifurcate point E will happen a leap on the point F and eventually further continuation 
along a curve. 
 



 
Picture No.xx 

Loading track of strut-framed beam, effect of snap-through. 
 
 
 
Description of behaviour of an arc on the picture No.xx: 
Loading track is analogical with strut-framed beam, but it contains a bifurcate point, in 
contrary to the strut-framed beam, which can, but need not contain this point. 
During gradual increasing of loading from the initial point 0 we will reach the bifurcate 
point, while the level of loading is chosen so that we would get to close surrounding of 
the bifurcate point. It is appropriate to secure sufficient large number of load increases by 
so expressively geometrical non-linear task, so that we could get as precise idea of the 
structure response on loading as we can. While we are near the BB, by adding of small 
load the construction will lose shape, will curve, gain antimetric shape and without other 
adding of loading it will gain stabile shape (all minor systems are positive), while there 
comes to great deformations within 1 increase of loading. 
But while increases of loading are like that, the system will pass without problems of the 
BB (probably with small number of increases of loading), we will get up to the limit point 
with solving , where the system is already singular. This state should not occur, it leads to 
symmetric deformations during overleap to a stabile branch. This case has little chance in 
practise. 
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Picture No.xx 
Load track of a flat arc. 

 
 
Example No.. 1 
 
Von Mieses´s beam  
 
(2 beams joint connected into strut-framed beam with low height), we consider 3 cases: 
 
1- both beams have small bending stiffness, comes to loss of stability of both beams (case 
0EFB), 
2- one beam has higher stiffness, will come to loss of stability of 1 beam (case 0EFB), 
3- both beams are very rigid, will not come to their local buckling, but to their sudden 
overleap to new stabile shape (case 0AB). 
 
For the cases 1 and 2, the load track composes of a bifurcastion point, not for the case 3. 
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Picture No.xx 

Von-Mieses girder modeled from 1D elements 
 
 

 
Picture No.xx 

Stiffness of the left beam= stiffness of 
the right beam , case No.1. 

 
 

Picture No.xx 
Stiffness of the left beam = 4% of the 

right beam´s stiffness, case No.2 
 

 
Picture No.xx 

Large stiffness of both beams, case No.3 
 



 
Picture No.xx 

Scheme of a strut-framed beam, modeled from 2D elements. 
 

 
Picture No.xx 

Von-Mieses´ s girder, at first both arms sheered during increasing of axial forces, only 
afterwards comes to change of general shape into final version. It is the case No.1. 

 
 
 
 
 
 
 
 
 



 
 
 
 
Example No.2 
 
Flat arc hinged, loaded equally by force. 
 

 
 

Picture No.xx 
Geometry of flat arc, modelled from 1D elements. 

 
 

Picture No.xx 
Stages of transition from the original through unstable into resulting- stable shape, while 
gradual addition of load. 



 
 

Picture No.xx 
Geometry and final deformed shape of a flat arc modelled from 2D elements. 

 
 

Picture No.xx 
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